The critical surface fugacity for self-avoiding walks on a rotated honeycomb lattice
نویسنده
چکیده
In a recent paper with Bousquet-Mélou, de Gier, Duminil-Copin and Guttmann (2012), we proved that a model of self-avoiding walks on the honeycomb lattice, interacting with an impenetrable surface, undergoes an adsorption phase transition when the surface fugacity is 1 + √ 2. Our proof used a generalisation of an identity obtained by Duminil-Copin and Smirnov (2012), and confirmed a conjecture of Batchelor and Yung (1995). Here we consider a similar model of self-avoiding walk adsorption on the honeycomb lattice, but with the impenetrable surface placed at a right angle to the previous orientation. For this model there also exists a conjecture for the critical surface fugacity, made by Batchelor, Bennett-Wood and Owczarek (1998). We adapt the methods of the earlier paper to this setting in order to prove the critical surface fugacity, but have to deal with several subtle complications which arise. This article is an abbreviated version of a paper of the same title, currently being prepared for submission. Résumé. Dans un article récent avec Bousquet-Mélou, de Gier, Duminil-Copin et Guttmann (2012), nous avons prouvé qu’un modèle de marches auto-évitantes sur le réseau hexagonal, interagissant avec une surface impénétrable, subit une transition de phase absorbante quand la fugacité de la surface est 1 + √ 2. Notre preuve utilisait une généralisation d’une identité obtenue par Duminil-Copin et Smirnov (2012), et permettait d’établir une conjecture de Batchelor et Yung (1995). Ici nous considérons un modèle similaire d’absorption de marches aléatoires auto-évitantes sur le réseau hexagonal, mais avec une surface impénétrable placée à angle droit par rapport à l’orientation précédente. Pour ce modèle il existe aussi une conjecture concernant la fugacité critique de la surface, formulée par Batchelor, Bennett-Wood et Owczarek (1998). Nous adaptons les méthodes de l’article précédent à ce cadre afin de prouver la fugacité critique de la surface, mais devons faire face à plusieurs complications subtiles qui apparaissent. Cet article est la version courte d’une article ayant le même titre et actuellement en préparation.
منابع مشابه
Two-dimensional self-avoiding walks and polymer adsorption: critical fugacity estimates
Recently Beaton, de Gier and Guttmann proved a conjecture of Batchelor and Yung that the critical fugacity of self-avoiding walks interacting with (alternate) sites on the surface of the honeycomb lattice is 1 + √ 2. A key identity used in that proof depends on the existence of a parafermionic observable for self-avoiding walks interacting with a surface on the honeycomb lattice. Despite the ab...
متن کاملThe critical fugacity for surface adsorption of SAW on the honeycomb lattice is 1 + √ 2
Recently Duminil-Copin and Smirnov proved a long-standing conjecture of Nienhuis, made in 1982, that the connective constant of self-avoiding walks on the honeycomb lattice is √ 2 + √ 2. A key identity used in that proof was later generalised by Smirnov so as to apply to a general O(n) model with n ∈ [−2,2]. We modify this model by restricting to a half-plane and introducing a fugacity associat...
متن کاملHoneycomb lattice polygons and walks as a test of series analysis techniques
We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks...
متن کاملExact results for Hamiltonian walks from the solution of the fully packed loop model on the honeycomb lattice.
We derive the nested Bethe Ansatz solution of the fully packed O(n) loop model on the honeycomb lattice. From this solution we derive the bulk free energy per site along with the central charge and geometric scaling dimensions describing the critical behaviour. In the n = 0 limit we obtain the exact compact exponents γ = 1 and ν = 1/2 for Hamiltonian walks, along with the exact value κ2 = 3 √ 3...
متن کاملA numerical adaptation of SAW identities from the honeycomb to other 2D lattices
Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by Nienhuis that the connective constant of self-avoiding walks on the honeycomb lattice is
متن کامل